estimator modulo - ορισμός. Τι είναι το estimator modulo
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι estimator modulo - ορισμός

EXPECTATION OF ERROR OF ESTIMATION
Unbiased estimator; Biased estimator; Estimator bias; Unbiased estimate; Unbiasedness

Módulo         
BRAZILIAN COMPANY
Modulo (company)
Módulo is a Brazilian company with international operations specializing in technology for Governance, Risk and Compliance. It operates in areas of software, consulting and education, offering, since 1985, security solutions.
modulo         
  • Quotient and remainder using Euclidean division
  • Quotient and remainder using ceiling division
  • Quotient and remainder using floored division
  • Quotient and remainder using rounded division
  • ''a''}}), using truncated division
COMPUTATIONAL OPERATION
Modulo (computing); Modular operation; Mod function; Modulo function; Modulus operator; Modulo operator; Modulo Operator; Modulus Operator; Modulo Operation; Modulus Operation; Modulus operation; Mod operator; % operator; Modulo operation; Mod op; Truncated division; Divmod
['m?dj?l??]
¦ preposition Mathematics with respect to or using a modulus of a specified number.
Origin
C19: from L., ablative of modulus.
modulo         
  • Quotient and remainder using Euclidean division
  • Quotient and remainder using ceiling division
  • Quotient and remainder using floored division
  • Quotient and remainder using rounded division
  • ''a''}}), using truncated division
COMPUTATIONAL OPERATION
Modulo (computing); Modular operation; Mod function; Modulo function; Modulus operator; Modulo operator; Modulo Operator; Modulus Operator; Modulo Operation; Modulus Operation; Modulus operation; Mod operator; % operator; Modulo operation; Mod op; Truncated division; Divmod
/mod'yu-loh/ 1. <mathematics> modular arithmetic. 2. <mathematics> modulo operator. (1999-07-12)

Βικιπαίδεια

Bias of an estimator

In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator. Bias is a distinct concept from consistency: consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased; see bias versus consistency for more.

All else being equal, an unbiased estimator is preferable to a biased estimator, although in practice, biased estimators (with generally small bias) are frequently used. When a biased estimator is used, bounds of the bias are calculated. A biased estimator may be used for various reasons: because an unbiased estimator does not exist without further assumptions about a population; because an estimator is difficult to compute (as in unbiased estimation of standard deviation); because a biased estimator may be unbiased with respect to different measures of central tendency; because a biased estimator gives a lower value of some loss function (particularly mean squared error) compared with unbiased estimators (notably in shrinkage estimators); or because in some cases being unbiased is too strong a condition, and the only unbiased estimators are not useful.

Bias can also be measured with respect to the median, rather than the mean (expected value), in which case one distinguishes median-unbiased from the usual mean-unbiasedness property. Mean-unbiasedness is not preserved under non-linear transformations, though median-unbiasedness is (see § Effect of transformations); for example, the sample variance is a biased estimator for the population variance. These are all illustrated below.